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THREE-DIMENSIONAL ANALYSIS OF ELASTIC SOLIDS-II
THE COMPUTATIONAL PROBLEMt

Y. R. RASHID

Gulf General Atomic Incorporated, San Diego, California

Abstract-A method of analysis of nonhomogeneous elastic solids involving general three-dimensional states of
stress was presented in Part I. The displacement equations of equilibrium were based on the finite-element varia­
tional procedure. The element shape considered was a tetrahedron with linear displacement approximations.
The main feature of that paper was the alternating component iterative method. The general procedure of the
method was presented in detail without reference to the computational problem. In the present paper, we deal
primarily with the computational characteristics of the method and discuss the roundoff problem and its influence
on the rate of convergence of the iterative process and the accuracy of the computed solution.

INTRODUCflON

IN ANY given computational problem, it is normally necessary to replace the exact values
of the functions involved by digital numbers. Since these digital numbers can only be
expressed to a finite accuracy by terminating fractions with a given base, each operation
injects a small perturbation into the calculation. The cumulative effect of these perturbations
on the final answer is commonly known as roundoff error.

One of the most important characteristics that distinguish iterative methods from
elimination methods is the repetitive structure of the former, which tends to make these
methods self-correcting. This feature is often credited with minimizing roundoff errors.
The magnitude and effectiveness of this self-correction is strongly dependent on the
conditioning of the system being solved. Ill-conditioned systems are generally the normal
targets for roundoff, and it is not unusual to encounter problems that are so ill-conditioned
that a meaningful solution by either method is unattainable. For problems of this kind,
iterative methods are inherently slowly convergent, and, due to roundoff, they may even
break down or converge to the wrong solution.

Iterative schemes involve, in one form or another, the repetitive application of a simple
algorithm that consists mainly of the accumulation of inner products and the subsequent
multiplication by the inverse of a single number or of a small matrix. In the performance
of those inner products, although one continues to work with the original matrix, roundoff
error is introduced in two ways: first, during the accumulation of inner products, and,
second, in the subsequent matrix division. It is generally incorrect, therefore, to assume
that iterative methods are protected from rounding errors. Because they involve the direct
solution (by elimination or by matrix inversion) of lower-order systems, block-iterative
methods are generally more susceptible to roundoff error than point-iterative methods.
On the other hand, block methods for positive definite symmetric matrices converge much
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faster than point methods. In making a choice between the two-solution techniques, we
find that roundoff problems are not decisive factors.

The alternating component iterative method [IJ is essentially a block method that
involves the direct solution of m block-tridiagonal systems of order (l/m)th of the total
system. In practical problems, the order of these subsystems may exceed 5000, and rounding
errors will therefore be present. In this part we discuss the influence of rounding errors on
the final answer and on the convergence properties of the iteration matrix.

SYSTEM OF GOVERNING EQUATIONS

The governing system of equations of an elastic solid can be written in the following
partitioned matrix form [IJ, equation (24):

m

F;(P) = L K;iP, Q)~{Q)
j= 1

i = 1,2, ... , m, (1)

where P and Q are lists of field and source points, respectively; F;(P) and Vj(P) are load and
displacement subvectors, respectively; K;iP, Q) are the stiffness coefficient matrices; and
m is the number of components. Applying the over-relaxation iterative method to equation
(1) results in the following form:

Vj(P)(S+I) = Vj(P)(S)+WK;il(P,Q{F;(P)- ~t: K;iP,Q)~{Q)(s+I)-Ji KdP,Q)~{Q)(S)J

i = 1,2, ... , m, (2)

where 1 ~ w < 2 is the over-relaxation factor and s is the iteration cycle. The solution of
equation (1) in the manner indicated by (2) was presented in detail in Ref. 1.

CONVERGENCE CRITERION

If we refer to equation (48) of Ref. 1 and rename K D , K L and K u, calling them D, Land
U, respectively, equation (2) can be written as

(D+wL)V(s+ I) = [(1-w)D-wUJV(s)+wF, (3)

where D is a block-diagonal matrix, Land U are strictly block-lower-triangular and
block-upper-triangular matrices, respectively, and V = (V1(P), V2(P), ... , Vm(P» and
F = (F1(P), F2 (P), ... , Fm(P» are the displacement and load vectors, respectively. The
subvectors Vj(P) and F;(P) are of order n = N/m, where m is the number of displacement
components and N is the total number of unknowns.

To develop a convergence criterion that accounts for rounding errors, it is necessary
to deal with the computational form of (3).

It can be shown [2J that the computed solution of equation (1) is the exact solution of a
perturbed equation of the form

(4)
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where EK and EF are roundoff error quantities. Similarly, yls+ 1) in equation (3) can be
shown to be the exact vector iterate of the equation

(D +wL)yls+ 1) +(ED+wEL)lS+ llyls+ 1)

= [(1- w)D -wUJyls) +[(1- w)ED-wEuJ(s+ 1)yls) +wF+wE~+ 1), (5)

where ED' EL and Eu are the roundoff error matrices in D, Land U, respectively, and EF

is the roundoff error vector in F. These error quantities, which change from cycle to cycle,
may include initial truncation errors also. By defining yls) in this manner we are justified
in treating all subsequent derivations as exact mathematical operations. When the
expression

els) = yls) - Y (6)

is introduced into equation (5), and after simple manipulation, the following expression for
the error vector iterate is obtained:

where

U<t+ 1) = [I+wD-1Lr1[D-1ED+wD-1ELJlS+1) 1
u<r 1) = [I +WD-1LJ-1[(1-w)D-1ED-wD-1Eu]ls+1)

A = [I+wD- 1LJ- 1[(1-w)I-wD- 1UJ

It follows by successive substitution in (7) that

els) = ( .Ii A(i»)elO),
,= 1

where

(7)

(8)

(9)

(10)

In the absence of roundoff, i.e. Mji) = U<P = 0 for all i ~ 1, equation (9) reduces to the
exact form

(11)

Conditions for convergence of equation (11) were discussed in Ref. 1. Those conditions that
were stated for the exact iteration matrix must also hold for the computational form of that
matrix, namely, Ali) (i = 1,2, ... ).

At this point, it is necessary to introduce the definitions of matrix and vector norms as
follows:

IIAXII
IIAII = ~~~1Xf

and

where IIXlloo is interpreted as max Ix;!.

q = 1,2,00,

(12)

(13)
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The three matrix norms that correspond to the three vector norms are given by

HAil! = ml:lx I lai)
} i

II A II 00 = max I laijl
i j

IIAI12 = max [A.i(A TA)]t,
1 :s;i~n

(14)

where A.i is an eigenvalue of ATA. The matrix and vector norms defined above satisfy the
usual relations for norms.

Ifwe ignore initial truncation errors, equation (5) serves as the computational equivalent
of equation (3). We seek a finite sequence of vectors {V(l), V(2), ... ViS)} in which ViS) is
close enough to the limit vector V in the sense

lim II Vis) - VII = lim Ile(S)/1 ~ J,
S~S s-s

(15)

where II e(sl II is some suitable norm of the error vector and J is considered small enough for
our purposes.

System (9) converges in the sense of(15) if, and only if, any norm ofA(i),for all i = 1,2, ... ,
is less than unity.

From (10) we have

(16)

or

(17)

provided II M\il II < 1. Equation (17) can be written as

where

f3 = IIAII
ry,y) = IIMfll1

Mr>(i) II i II
ry,2 = IIAf

(18)

(19)

It is not uncommon to encounter exact iteration matrices oftype A whose largest norms
are very close to unity. For this class of matrices the contribution of rounding errors may be
of such magnitude that (18) will not be satisfied for some value of i. If we assume that ry,y)

and ry,~) are of the same order of magnitude, then the permissible upper limit for ry,y) and
ry,~) is given by

(20)
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We cannot guarantee convergence if IXY> and IX~> exceed the strict upper bound in (20). From
(8) and (19) we have for IXY>

IXY> :::; IJ(I +wD- 1L)-lD- 1 1111EW + wE~>II. (21)

We can consider the case where w = 1, without loss of generality; then (21) simplifies to

(22)

The rounding error matrix (ED+EL) comes from solving a triangular set of equations
with matrix (D +L). Following Wilkinson [2], the norm of this error matrix is bounded as
follows:

(23)

where N is the order of the matrix and t is the number of precision binary digits. Combining
(22) and (23), we obtain

(24)

The quantity (1ID+LIIII(D+L)-l!D can be regarded as condition number. For ill­
conditioned matrices the upper bound in (24) can be quite large; therefore, we cannot
guarantee convergence, in the practical sense, for that upper bound of IXY>. Convergence is
guaranteed, however, if the quantities IXY>' IX~>, and (liD +Llj . II(D +L)-lID satisfy the follow­
ing inequality:

(25)

IfPfalls in the range 0.99 :::; P< 1, which implies ill-conditioning, inequality (25) represents
a very severe restriction on the value of condition number (I1(D+L)-lIIIID+LII). Since
condition numbers of ill-conditioned matrices can be appreciably greater than unity, it is
entirely possible that for large N (of order 104

) the error buildup may cause the iterative
process to diverge.

RATE OF CONVERGENCE

The rate of convergence of the iterative process may be defined for an s-cycle process as
follows [3] :

Recognizing that

R( n8 A(i» = _!1 II t:(8) \I
. nil (0)11'
1= 1 s t:

(26)

(
11t:(8)11) 1/8

11t:(0)11

is the average reduction factor of the error norm per iteration, it is clear from (26) that the
reciprocal of
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gives a measure of the number of iterations required to reduce the norm of the initial error
vector by a factor e. At first glance, definition (26) does not seem to be useful since in a
practical problem the error vector is not usually known. However, we shall derive a measure
of

R( ;0
1

AU»)

in the form of an upper bound expressed in terms of known quantities. From equation (6)
we obtain

(27)

and

From the fundamental properties of vector norms we have

Ile(s-I)+e(S)1I ::;; Ile(S-I)1I + II e(s) II

and

(28)

(29)

Ile(S-I)II-lIe(S)II::;; Ile(s-O-e(s)ll. (30)

Since Ile(S-I)II-lIe(s)11 > 0, we can add (29) and (30), and after simple manipulation obtain

Ile(S- °+e(S)II_lle(S-I) - e(s) 1/ ::;; 2/le(S) II. (31)

If we substitute in (31) from (27) and (28), we have

21Ie(S)1I 2 112V - V(s-l) - V(S)II_IIAV(s)11

2 2/1V11-1I V(s)II-IIV(s-I)I/_IIAV(s)ll, (32)

but

IIAV(S)II = IIV(S)_V(S-I)11 ~ IIV(s)II-I!V(S-I)II.

When we add the last two inequalities, we obtain

21Ie(S)11 + IIAV(S)II 2211V11-211V(s-I)II-IIAV(s)1I

or

(33)

(34)

(35)

Without loss of generality we may take the initial displacement to be identically zero; in
other words,

Ile(O)11 == II VII ¥- O.

Dividing inequality (35) by definition (36) gives

lIe(s) II > 1__1_(11 V(S-Oll + IIAV(s)!I).
Ile(O)11 - IIVII

(36)

(37)

It remains to express the generally unknown II VII in terms of known quantities. Remember­
ing that V is the exact limit vector, it is necessary that the computed bound for II VII be as
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sharp as possible. For this we return to equation (1),

F = KV.

201

(38)

In order to obtain a sharp bound for Y, we introduce, purely on intuitive basis, the following
relation between Y and y(,):

lim y(,) = y(S) = A. Y.-s (39)

(40)

for sufficiently large S. Here, A. is a positive number slightly less than unity. Equation (39)
implies that toward the end of the iteration y(.) will have the correct shape but the wrong
amplitude. From (38) and (39) we obtain for A.

y(S)TKY(S)

A. = y(S)TF '

and for II YII,

(41)

(42)

If y(S) is sufficiently close to Y, then (40) is an energy balance that, incidentally, is insensitive
to roundoff. Equation (41) represents a very good estimate for II YII.

Substituting for 1/(11 YII) in (37) from (41) gives

Ile(')11 > 1 A. (1Iy(·-l)11 IIAY(')II)
II e(O) II - -II y(S) II + .

Finally, by virtue of (26),

(43)

in which 0 < S :s; S.
Equation (43) serves as a computational sharp upper bound for the rate ofconvergence

and it can also be used to compare the convergence properties ofdifferent iteration matrices.
In particular, we wish to compare

and R(A') of equations (9) and (11), respectively. Since it is virtually impossible to find the
exact value of R(A'), for the purpose of this comparison one may compute the upper bound
for

from (43) by the two computational schemes discussed in Ref. 1.
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RELATIVE ACCURACY OF THE SOLUTION

The second major problem area of rounding errors is their influence on the final results.
If the coefficient matrix is ill-conditioned with respect to the solution, it usually exhibits
poor convergence properties. Therefore, the behavior of the iterative process is a very
good index of the magnitude of roundoff.

A correction procedure, which was equivalent to performing the last few cycles in
double precision, was presented in Ref. 1. From a practical standpoint, this treatment of
the problem is quite sufficient. It would be helpful, however, if one were able to determine
the relative accuracy of the solution through some sort of error analysis. Unfortunately,
rigorous error analysis usually leads to establishing upper bounds for the relative accuracy
of the computed solution in terms of generally noncomputable quantities. Those upper
bounds may be functions of the size of the matrix, the type of arithmetic used, and the
norms ofthe exact inverses ofthe original matrix or the triangular decompositions. Although
such bounds can be helpful in studying the general properties of the matrices involved,
and perhaps can point out the areas where and when to expect trouble, they tend to over­
estimate the true situation by emphasizing the worst conditions.

The two general criteria that are used to gauge the accuracy of the computed solution
as iteration progresses are the change in the solution d Vis) and the size of the residual R(s)

expressed as norm quantities. Both criteria when considered separately can be misleading,
especially for ill-conditioned problems. On the one hand, a large IIR(s)11 may not necessarily
indicate an inaccurate solution. On the other hand, although a large IldV(S)11 implies large
error in V(s), a small lidV(s)11 may be indicative of poor convergence and not good accuracy.
Therefore, one must examine both quantities, namely, the correction in the solution, as
well as the residual, in order to be able to determine closely the relative accuracy of the
final results.

In the alternating-component iterative method presented in Ref. 1, one deals in each
iteration with N inner products of order N and with the direct solution by triangular
decomposition of m systems of equations. The computation procedure of that method is
summarized as follows:

1. The residual vector R(P) is computed from

Rj(P)(S) = F;(P)- L Kij(P,Q)~(Q)(S)_ L KiiP,Q)~(Q)(S-l)

j= 1 j=i

i-I m

i = 1, 2, ... , m. (44)

2. The displacement increment vector d V(P) is then computed from

M~(P)(S) = V i-
1Li 1Ri(P)(S), (45)

where Vi and L i are, respectively, upper and lower block triangular matrices such that

i = 1,2, .. . ,m (46)

3. Finally, the displacement vector iterate is obtained from

From Ref. 1, equation (58), the convergence criterion is established by

lim IIR(S)lll = o.
s-oo

(47)

(48)
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Since the main concern is the problem ofroundoff, we assume that iteration has progressed
to the point where no further reduction in II R(S) 111 is obtained, which indicates that R
consists mainly of rounding errors. Assuming this stalemate condition has been reached
after S cycles, then we can continue for q additional correction (double precision) cycles
in the manner outlined in Ref. 1. Since the triangular decomposition of K ii [equation (46)]
is independent of the iteration cycle s, it need not be recomputed. However, (44) and (45)
will have to be computed in double precision if any further improvement in the solution is
to be obtained. Denoting the double precision equivalents of Rand !1V, as defined in
Ref. 1, by f and oV, the correction oV!S+q) then satisfies the following equation:

i = 1,2, ... ,m, (49)

where Eii is the rounding error matrix that comes from the single-precision computation
of L i and Vi' In other words, the computed L i and Vi satisfy

(50)

Equation (49) holds if no further rounding errors are introduced in the solution of the two
triangular equations

(51)

and

(52)

and we naturally assume this. This assumption is valid approximately, since in the cor­
rection cycle we solve (51) and (52) in double precision. The residual is defined by

and from (49) we see that

Ilf!S+q)-KiioV!S+q)11 ::::;; IIEiilllloV!s+q)ll·

Following Wilkinson [2], IIEiill oo may have the estimate

IIEiill oo ::::;; 2g 2- t(nI2+ 1)(n-1),

(53)

(54)

(55)

where n in our case is N1m and g is the order of magnitude of the largest element in Vi'
The inequality (54) becomes

IlrlS+q)- KiiOV!S+q)11 00 ::::;; 2gr t(nI2+ 1)(n-l)lloV!S+q)11 00' (56)

Ignoring the value of n in comparison with n2
, from (56), we have

Ilf!S+q)-KiiOV!S+q)lloo ::::;; grtn2 1IoV!s+q)1100'

If 110V!S+q) II 00 after q cycles falls in the range

2-[Z(q)+1) < lIoV!s+q)lloo ::::;; 2- Z(q),

then from (57), replacing n by N 1m, we have

II ils +q) - KiiOV!S+q) II 00 ::::;; (:) 2g2-[z(q)+t).

(57)

(58)

(59)
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If Z(q) = t, then the displacement vector becomes that of the single-precision, correctly
rounded solution. In this case we have

(60)

If g is 0(109
), N = 104

, m = 3, and we are working to eight-decimal-place accuracy, the
bound in (60) is 0(1). Such a bound is attainable in practice.

By virtue ofthe definition of the oo-norm, equation (59) can be generalized to the total
residual vector; hence,

(61 )

The significance of this equation is that if the residual satisfies (61) we can guarantee
the accuracy of V(s+q) to z(q) binary digits, provided that after the stalemate condition
IIRII~S) = constant has been reached, q correction (double-precision) iterations were
performed.

EXAMPLES

Example 1

This example was given in Ref. 1; it serves our purposes to discuss it again here. The
problem being investigated consists of a cantilever beam of rectangular cross section and
a span-to-depth ratio of 10 loaded with end shear. The applied shear stresses were distribu­
ted consistently with the three-dimensional beam theory. Although this example is of no
real practical importance, it presents an interesting computational problem.

The example contains 10,530 displacement unknowns, grouped into 3 components,
and has a total bandwidth of 1050. The quantities to be investigated are the following
vector norms: the I-norm ofthe residual force vector IIRI11' the oo-norm ofthe displacement
vector 11V1100. the oo-norm of the displacement increment vector IIAVlloo' and the rate of
convergence R(ni= 1A(i») computed from equation (43). If we consider, for illustration
purposes, that these vector norms are continuous functions of the number of iteration
cycles, we may then plot these quantities as shown in Fig. 1. Ignoring the initial apparent
divergence as reflected in the IIR 111 curve, the iterative process seems to converge very slowly
at a decreasing rate. At the 27th cycle, the displacement increment is of the order of 1%of
the exact solution and about 3%of the computed 27th vector iterate. The rate of conver­
gence was computed to be 0·019019. The reciprocal of this quantity is a measure of the
number of cycles required to reduce the norm of the error in V by a factor 2·71828. There­
fore, to reduce the norm 116(27)11 = II V(27) - VII by one order of magnitude, 121 cycles are
needed. The computed 116(27)1100 is approximately equal to 57 %ofthe exact II Vlloo' Therefore,
from the above computed rate of convergence, at least 121 cycles are needed to reduce the
error norm 116 1100 to an acceptable value of O'57 %.

By applying the extrapolation formula (68) in Ref. 1, the computed norms at the end of
the first cycle after extrapolation indicated substantial improvement in the iterative process.
Although the norm II Rill increased by more than one order of magnitude, the rapid rate of
convergence that followed brought IIRl11 down to its previous value in two cycles. The rate
of convergence increased by over six times. The computed II V(27) II 00 increased by about
three times to within 2 %of the exact value. At the end of the 36th cycle, II V(36)11 00 was
brought to within 0·5 %of the exact solution. The computed rate of convergence increased
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FIG. 1. Example I, rate of convergence of the iterative solution.

monotonically from 0·120165 to 0·134059. The largest displacement increment II AVII <Xl
was close to 0·1 %of the exact solution at the end of the 36th cycle.

Further improvement of the solution was effected by carrying out cycles 37 through 41
in double precision. As expected, a slight increase in II AV II <Xl occurred, but it was reduced
to a value about half the value anticipated if double precision were not used. This implies
that at this stage a large percentage of II AV II <Xl is contributed by roundoff.

It is of interest to compare the values at the end of iteration of II AV II <Xl and II R III of
Example 2 in Ref. 1, the pressure vessel, with those ofthis example. Although IIRlll divided
by the total number of unknowns, which is a measure of the average error, is of the same
order of magnitude in both problems, the normalized norm quantity IIAVII<Xl/IIVII<Xl is
0·04 %and 0·0009 %for the beam and the pressure vessel, respectively. Therefore, if one
judges the accuracy of the solution on the basis of IIRlll alone, both solutions have the
same relative accuracy. However, it is clear from the above results that the degree ofaccuracy
is about 200 times higher in the pressure vessel. This type of behavior typically distinguishes
the well-conditioned system from the ill-conditioned ones.

Example 2

In this example, we investigate the influence of roundoff on the computed solution.
Although the problem was discussed briefly in the previous beam problem, the solution
was not carried out far enough to permit a quantitative error analysis. For the present
purposes, we selected a pressure vessel problem with 7092 displacement unknowns and
a total bandwidth of 648.
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The single-precision (S.P.) vector norms, IIRl11 and IIAVlloo' and the corresponding
double-precision (D.P.) vector norms, IIfl1 1and II<5VII "J' are plotted in Fig. 2. At first, the
iteration was carried out in single precision until the condition IIRl11 = constant was
attained, indicating roundoff error contribution. The calculations were then repeated in
double precision, starting with cycle 11. Although the roundofferror component was always
present, it was not detectable until the 14th cycle. At the end of the 20th cycle, the condition
IIfl1 1= constant was attained. At that stage, the value of IIfl1 1was about four times smaller
than the corresponding single-precision quantity IIRIl1' A more significant comparison,
however, is that of II AV 1100 with its double-precision counterpart II <5ii 1100' The former reached
an oscillatory stage, at the limit of single-precision representation, at the end of the 18th
cycle, whereas the latter maintained its monotonic decrease. At the end of the 20th cycle,
the two quantities were one order of magnitude apart.
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FlO. 2. Example 2, accuracy and rate of convergence of the iterative solution.

The stalement condition IIRl11 = constant implies that any further iteration involves
roundoff error manipulation only. By changing the mode of computation to double pre­
cision, equation (61) allows us to evaluate quantitatively the relative accuracy of the
solution. In our case, z(q) = t = 26, g is 0(109

), and N1m is 2364. The theoretical upper
bound of the residual, from equation (61), is approximately equal to 0'56. Therefore, for the
solution to be of at least 8 decimal-place accuracy, the computed residual at the end of the
20th cycle must not exceed that value. This computed value was found to be 0'26611, which
satisfies the condition stipulated above. This example provides at least one verification of
the error analysis presented earlier. Therefore, one may use equation (61) to establish the
relative accuracy of the solution provided the conditions on which (61) is based are satisfied.
In practice, however, the level of accuracy given by (61) is seldom required.
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The second influence of roundoff is in the rate of convergence of the iterative process.
It was demonstrated in Example 1 that the rate of convergence can be increased by using
double-precision arithmetic. However, roundoff error was not isolated from other effects;
therefore, the influence of roundoff error on the rate of convergence was not conclusively
established by that example. In the present example, the double-precision and single­
precision rates of convergence [equation (43)] were computed at the end of the 20th cycle
and are shown in Fig. 2. Since double-precision iteration after cycle 18 dealt mainly with the
roundoff error component in the solution, the difference in the rates of convergence at the
end of the 20th cycle is attributed to roundoff error. However, at that stage in the iteration,
the difference of50 %between the two values, as indicated in Fig. 2, is oflittle practical value.
In earlier cycles, the contribution of roundoff to the rate of convergence and the solution
accuracy is not detectable. In well-conditioned systems, the effect of roundoff becomes
conspicuous at a stage beyond the range of practical interest. For ill-conditioned systems,
since double-precision iteration is more effective during the latter stages of iteration, the
last few cycles only may be computed in double precision.
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AficTpaJcr-B IfaCTH I, AaeTCII MeTOA paclfeTa HeoAHopoAHbIX ynpyrHx Ten, B 06ll.leM TpexMepHoM HanplllK­
eHHOM COCTOlIHHH. npHBOAlITClI ypaBHeHHlI B nepeMell.leHHlIX AJIII paBHOBeCHlI Ha OCHOBe BapHaUHOHHoro
MeTOAa KOHelfHoro :meMeHTa. PaCCMaTpHBaeTCII <l>opMa :meMeHTa B BHAe TeTpa3Apa C mIHeAHbIMH
rrpH6nHlKeHHlIMH AnlI rrepeMeIUeHHli. rnaBHoli OC06eHHOCTblO rrpeAbIAYll.leli pa60TbI lIBJIlIl:TCII HTepaUHOH­
HbIli MeToA uepeMeHHoro KOMrrOHeHTa. YKa3HHO B Heli rroAPo6HO 06IUHli npouecc MeTOAa, 6e3 OTHO­
MeHHlI K 3aAalfe lfHcneHHoro pell.leHHlI. B HaCTOIIll.leli pa60Te, paCCMaTpHBaeTClI rnaBHbIM 06pa30M Bonpoc
paClfeTHbIX xapaKTepHCTHK MeTOAa H o6cYlKaeTClI 3aAalfa oKpyrnelfeHHJI, .AaJIee ee BJIHIIHHe Ha CKOpOCTb
CXOAHMOCTH HTepaUHH a TaKlKe TOlfHOCTb pell.leHHlI.


